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Abstract
The replicability crisis refers to the apparent failures to replicate both important and
typical positive experimental claims in psychological science and biomedicine, fail-
ures which have gained increasing attention in the past decade. In order to provide
evidence that there is a replicability crisis in the first place, scientists have developed
various measures of replication that help quantify or “count” whether one study repli-
cates another. In this nontechnical essay, I critically examine five types of replication
measures used in the landmark article “Estimating the reproducibility of psycholog-
ical science” (Open Science Collaboration, Science, 349, ac4716, 2015) based on
the following techniques: subjective assessment, null hypothesis significance testing,
comparing effect sizes, comparing the original effect size with the replication confi-
dence interval, and meta-analysis. The first four, I argue, remain unsatisfactory for a
variety of conceptual or formal reasons, even taking into account various improve-
ments. By contrast, at least one version of the meta-analytic measure does not suffer
from these problems. It differs from the others in rejecting dichotomous conclu-
sions, the assumption that one study replicates another or not simpliciter. I defend it
from other recent criticisms, concluding however that it is not a panacea for all the
multifarious problems that the crisis has highlighted.

Keywords Replicability crisis · Reproducability crisis · Null hypothesis significance
testing · Effect size · Confidence interval · Meta-analysis

1 Introduction

Why run a seemingly successful scientific study again? Suppose that it found evi-
dence for an interesting effect and even estimated that effect’s strength or magnitude.
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If everything is as it seems with the study in question, it is highly likely that run-
ning it again “will successfully produce the same or sufficiently similar results as the
original” (Fidler and Wilcox 2018, §1). The original such study would be called repli-
cable and the new study its replication. Replicable studies are widely considered to
be, at least in principle, the sina qua non basis of much of workaday scientific knowl-
edge (Schmidt 2009; Romero 2019).1 This is because the replicability of scientific
results reflects a kind of reliability, an assurance that scientists can dependably build
on those results in further inquiry.

Understandably, then, failures of replicability in social psychology (Klein et al.
2014; OSC 2015), cancer biology (Begley and Ellis 2012; Nosek and Errington
2017), and other social scientific scientific fields (Camerer et al. 2018) have renewed
scientific attention to the efficacy of current research and unsettled some scientists’
confidence that they can safely and cumulatively build on published findings. Such
failures arise from carefully attempted replications that did not produce even suffi-
ciently similar results as the original. Although opinions differ on the main causes of
replicability failures—see, e.g., Fidler and Wilcox (2018, §2) and Romero (2019, §3)
for reviews thereof—there is evidence that the vast majority of scientists consider it
to constitute a crisis of sorts. For example, in an online survey of 1,576 scientists, the
journal Nature found that 90% of respondents agreed that there is a “reproducibility
crisis”; 52% described the crisis as “significant” and 38% as “slight” (Baker 2016).

Prior to diagnosing the sources of the problem, one must establish the existence
and extent of the problem; conceptually prior even to that, one must adopt some
method of measuring replication. While within the scientific literature on replica-
tion there has been much discussion of what sorts of scientific studies can count as
potential replications (Fidler and Wilcox 2018, §1)—what it would mean to “run it
again”—perhaps surprisingly there has been comparatively little discussion of the
most appropriate ways to measure replication. Most have assumed that a replica-
tion measure must employ a definition of when a potential replication is a success
or failure—or, perhaps more precisely, what it would mean for the results of the
potential replication to be “the same or sufficiently similar.”2 Indeed, even under this
assumption, while the aforementioned studies exhibiting replicability failures and
many others concerned with replicability adopt various prima facie plausible mea-
sures of replication, they do not systematically explore arguments for or against them.
Yet, each measure in general entails different conclusions regarding the extent of a
study’s replicability, thus the severity of the replication crisis.

Such a more systematic (and critical) exploration is the primary goal of this essay.
In particular, I focus on the fives classes of replication measures discussed in the

1Depending on the discipline and context in which they are used, terms derived from “replicable” and
“reproducible” can be synonymous or not (Fidler and Wilcox 2018, §1). In this essay, these terms will
not mark distinct concepts, although I will attempt to use only terms derived from “replicable”; I am in
particular only concerned here with the kind, adumbrated above, sometimes known as direct replication
(Schmidt 2009). (See, e.g., Nosek and Errington (2020) or Machery (2020) for alternative definitions and
typologies.) However, I am not concerned here so much with the minutiae of its definition as with the
techniques for measuring it; see the end of this Section 1 for further remarks thereon.
2One of my conclusions, discussed in Section 8, will be that the dichotomous terms of “success” and
“failure” are inapt for measuring replication.
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seminal work on replication in psychology by the Open Science Collaboration (OSC
2015):

1. a subjective assessment by experts;
2. whether one arrives at the same conclusions in a significance test of the null

hypothesis that there is no effect;
3. the results of a significance test of a difference in effect sizes between the

original and attempted replication;
4. comparing the original effect sizes with confidence intervals from the attempted

replication; and
5. statistical meta-analytic methods.

Each of these classes employs calculations or statistics that differently summarize
what the “results” of a scientific study are. I describe how in the first subsection of
each of Sections 3–7, respectively, after introducing the common framework of clas-
sical statistical testing and estimation that they presuppose in Section 2.3 Although
OSC of course employ them in the context of the replicability of studies in psycho-
logical science, they apply generally to any studies that use statistical testing in their
determination of results.

Now, OSC themselves proclaim that none of these classes of replication measures
is without problems and do provide some brief criticisms of each of them.4 In the
second subsection of each of Sections 3–6, I critique each of the first four classes
of measures on various conceptual and formal grounds. My critique in each case
extends beyond OSC’s; I also consider various modifications and responses to these
criticisms that, I argue, are ultimately unsuccessful.5

Then, I defend in Section 7.2 a certain version of the fifth class of measures, based
on the ideas of statistical meta-analysis, from OSC’s and other criticisms. In a word,
these criticisms erroneously extend problems for applying meta-analytic techniques
in other, more traditional contexts to their use for measuring replication. The version
of the meta-analytic measure I endorse—what Braver et al. (2014) call “continu-
ously cumulating meta-analysis”—also avoids my criticisms of the other replication
measures I discuss. But I emphasize in the concluding Section 8 that even though
meta-analytic measures of replication are free from the problems plaguing other mea-
sures, they are not a panacea for the current challenges of replicability. In particular,
they do not immunize scientific inquiry from bias or questionable research practices,
whose extent must be estimated and modeled within a meta-analysis to make its con-
clusions deriving from our total evidence more accurate. Nevertheless, as a method
for measuring replication, meta-analysis suggests moving beyond dichotomous mea-
sures to quantifying how replications change our total evidence for hypotheses of
interest.

3Others have suggested interpreting OSC in Bayesian terms (Etz and Vanderkerckhove 2016), which I will
address in Section 4.2.
4Cf. their statements that “There is no single standard for evaluating replication success” (OSC 2015, p. 2)
and “No single indicator sufficiently describes replication success, and the five indicators examined here
are not the only ways to evaluate reproducibility” (OSC 2015, p. 6).
5To be clear, my critique’s focus is the replication measures, not OSC’s particular employment of them or
their conclusions about psychological science.
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Before continuing to review OSC’s different measures of replication, I wish to
circumscribe the scope of the present investigation. Not all studies are candidate for
replicating any other: they have to be sufficiently similar in the relevant ways. How
can one make precise this vague notion of a candidate for direct replication? All
replication measures presuppose some practically workable answer to this question.
However, as I described in footnote 1, I will not prosecute that question here. In the
remainder of this essay I presuppose that this question has been answered in some
satisfactory way and that the hypothetical replication studies under consideration are
genuine candidates for replications of the hypothetical original studies. This is possi-
ble because essentially none of the details of such an answer play a role in assessing
replication measures: a definition of replication screens the replication candidates,
but once they are passed, the definition has little to do with whether those poten-
tial replications “successfully produce the same or sufficiently similar results as the
original.”6

2 Measures of replication

All of the measures of replication that OSC consider apply to scientific studies ana-
lyzed in the setting of classical statistical testing and estimation. In such studies and
their attempted replications, scientists collect data from a population to find evi-
dence for the existence of a certain effect and various magnitudes it could have. For
example, scientists might be interested in replicating the effects of different cultur-
ing conditions on the efficiency of pluripotent stem cells to differentiate into certain
other types of cells (Patel and Alahmad 2016). One hypothesis states that a cer-
tain culturing condition has no effect. Others state that the condition has a positive
or negative effect, to some specific degree—the effect size. Each of them, perhaps
with some auxiliary assumptions about the experiment, entails a probability distribu-
tion for the differentiation efficiency of each resulting cell type. In the parlance of
classical statistics, each of these is a simple statistical hypothesis for the data.

To test a given simple statistical hypothesis in a study, one typically amalgamates
the data into a statistic—a function of the data—that orders all possible data accord-
ing to how unexpected or extreme they are if that simple statistical hypothesis were
true. The exact nature of the statistic is not so important for present purposes, only
that the original and potential replication each use the same statistic (or one that
is mathematically equivalent). For example, the data might consist of the percent-
age yields of healthy cells of a certain type after applying the culturing condition to
several samples of stem cells, and the statistic might be those yields’ mean.7 The
data are extreme with respect to some hypothesis about the effect of the culturing

6One way of criticizing a replication effort thus is to argue that the claimed replication studies do not
qualify as candidate direct replications, as Gilbert et al. (2016) did with OSC (but see Anderson et al. 2016
for a reply).
7Good experimental design in these sorts of contexts dictates the comparison of the effect of the culturing
condition on yields with some sample of stem cells left untreated, the so-called control group. I have
omitted these details, which do not make any difference to the present illustration of classical statistical
testing and estimation, for simplicity of presentation.

57   Page 4 of 27 European Journal for Philosophy of Science (2021) 11: 57



condition to the extent that the observed mean differs from the most likely mean,
assuming that hypothesis were true. Given the mean of the data, one can compute
that statistic’s p-value: the probability of obtaining data more extreme than that actu-
ally collected, again assuming that hypothesis were true. The smaller the p-value,
the more unlikely or incompatible the observed data are with the hypothesis, i.e., the
stronger evidence the data provide against that hypothesis.8

With these concepts and techniques, the following three activities are of primary
importance:

Null hypothesis significance testing One calculates the p-value of the statistic
based on the hypothesis that there is an effect of a particular size, called the
null hypothesis. If the p-value falls below some conventional threshold called the
significance level—often 0.05 in psychology—then the data are understood to pro-
vide sufficient evidence against the null hypothesis to reject it. When a statistic is
used for such a significance test in this way, it is called a test statistic. Often, the
null hypothesis is that there is no effect—i.e., that the effect size is zero. In this
case, the rejection of the null hypothesis entails the acceptance of the existence of
the effect in question.

Point estimation of effect size Merely finding evidence for the existence of an
effect does not entail anything about the size of that effect. One can use the value
of a statistic based on the data, such as a mean as mentioned above, to estimate
the actual effect size. Often, this is the effect size that maximizes the likelihood
of the observed statistic or minimizes a function of the expected estimation error.
When a statistic is used in this way, it is called an estimator, and the result a point
estimate. As before, the particular nature and details of the estimator are not so
important for present purposes, only that the original study and its replication use
the same estimator.

Constructing confidence intervals for effect size Statistical hypotheses typically
do not assign 0/1, or trivial, probability distributions to possible data: they assign
probabilities (or probability densities) strictly between 0 and 1 to much possible
data. Thus various possible data sets can be realized in an experiment, some more
misleading about the true effect size than others. This affects the variability of
point estimates in the same way. One way of representing this variability is not
by estimating the effect size with a single number, but with an interval of num-
bers, called a confidence interval. Like with point estimates, confidence intervals
depend on the data, but like with significance tests, these intervals depend on a
conventional parameter called the confidence level—often 0.95—which gives the
probability that the interval assignment procedure produces an interval containing
the true effect size, assuming the adequacy of the modeling assumptions.9 (The
size of the interval tends to covary with the size of the confidence level).

8The way it does so is related to the concept of adherence in reliabilist epistemology (Nozick 1981). For
more on concepts of evidence in classical statistics, see Fletcher and Mayo-Wilson (2021).
9It’s important to remind ourselves that this probability is not that for any particular interval so produced
to contain the true effect size, as would be for a Bayesian posterior interval. In classical statistical testing,
statements like that are not even elements of the event space.
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There is also an important connection between confidence intervals and sig-
nificance tests. Given a test statistic calculated for a particular data set, and a
particular significance level, one can ask: which (point) null hypotheses would a
test of significance reject at that significance level? The complement of this set in
the hypothesis space—all and only the effect sizes that the test would not reject—
is a confidence interval with confidence level equal to one minus the significance
level (Cox and Hinkley 1974, Ch. 7.2.iii). (This is why the commonly chosen con-
fidence level of 0.95 pairs with the commonly chosen significance level of 0.05.)
In other words, the effect sizes within a particular confidence interval represent
those that are not so incompatible with the data as to necessitate rejection in a
significance test.

With these three activities in mind, suppose that one is given an original study and
an attempted replication thereof that have tested the same null hypothesis and each
has produced a point estimate of the effect size and perhaps also a confidence inter-
val for that effect. How does one measure whether (or the extent to which) the second
study replicates the first? In each of the following sections I first describe and moti-
vate the five classes of replication criteria that OSC use to answer this question. The
goal is to show how each has at least some prima facie plausibility. Then I criticize
the viability of the first four classes of measures and defend the viability of a ver-
sion of the last, meta-analytic measure. The themes of these criticisms cluster around
the unchecked possibility of objectionable bias (Section 3.2), the necessary reference
to parameters whose values makes a difference to the replication measure but the
selection of which is arbitrary or not otherwise grounded in reasons pertinent to the
methodology, and asymmetries in how well the measures determine their outputs—
replication successes and failures (Sections 4–6). The second theme is based on
a commitment to the grounding of scientific evidential decisions in epistemically
pertinent reasons, rather than the idiosyncratic and potentially biased judgments of
individual scientists. The third is based on plausible formal properties of desirable
replication measures: they should render verdicts about replication success and fail-
ure about equally well, and they should respect the symmetry of replication when
modeled as a binary relation on studies representing “having the same or sufficiently
similar results”. The former bears on a replication measure’s ability to support its
function of helping to assess the reliability of scientific findings, and the latter bears
on its fit with the formal properties desired of it as a relation between studies. These
criticisms are thus not of the three activities mentioned above—significance test-
ing, point estimation, or confidence intervals—but only of the particular replication
measures that employ them.

3 Subjective assessment

3.1 Subjective assessment: description

One very simple method for assessing whether an attempted replication study pro-
duced the same or sufficiently similar results as an original is simply to ask the
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replication team to answer the question, “Did your results replicate the original
effect?” This is one of the replication measures used by OSC. Alternately, one might
ask instead the team of the original study whether the new study replicates the results
of the original.

OSC motivate this type of measure by the complexity of certain experimental
designs and statistical models: “For more complex designs, . . . quantitative analysis
may not provide a simple interpretation,” (2015 p. 4) while the scientific team may
use their professional judgment to cut through this complexity. Furthermore, inso-
far as there is a fundamental sense in which scientific reasoning depends on human
judgment, assessments of replicability ultimately depend on this judgment, too.

3.2 Subjective assessment: critique

There has been little discussion of subjective assessment as an appropriate replica-
tion measure, except perhaps insofar as it serves as a proxy for other, typically more
formal replication measures (Dreber et al. 2015). In such proxy cases, scientists are
given instructions describing a particular, more formal replication measure—such as
that for null hypothesis significance testing in Section 4—and asked to judge whether
a given study replicates the results of another, or predict whether the faithful imple-
mentation of a certain study design will replicate the results of another. (I will return
to a discussion of these cases later in this section). By contrast, the subjective assess-
ment measure that OSC invoked gives no instructions to interpret the question “Did
your results replicate the original effect?” in any particular way. Scientists were free
to interpret it as they see fit.

A first concern relevant to this (non-proxy) measure is that the reasons for a judg-
ment about replication should be just as important as the judgment itself. Those
reasons should be aligned with some theoretical account of what a replication is, so
that human judgment is a reliable indicator of how its target would be classified on
that account. Moreover, these reasons should track facts about the outcomes of exper-
iments that are not themselves determined by or reducible to the outcomes of human
judgment. Indeed, if one understands human bias as deviation from the facts or from
an ideal scientific consensus determined (at least in part) from the facts, then the very
possibility of human bias entails that those judgments do not completely determine
or reduce to those facts.10

An analogy may illuminate this point. The sense in which I am claiming that the
facts of replication are not determined by or reducible to human judgment is the
same sense in which the results of an election are not, but by the votes cast and the
election format. Someone’s judgment (even repeated affirmation!) about the results
of an election is biased when their method of judgment is not reliably determined by

10This entailment would not obtain if one understood human bias as deviation from scientific consensus
regardless of how that consensus was reached. It is an assumption, albeit one that seems to be widely
held and sometimes only implicitly in the scientific and philosophical literature concerning objectivity,
replicability, and reproducibility, that a scientific community’s methods for reaching consensus make a
difference to whether those methods are objective. See, for example, Reiss and Sprenger (2017 §§4–5)
and references therein.
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and indicative of the facts about the votes cast and the election format. Such a method
of judgment does not track and inform decisions about election outcomes that should
depend on the relevant facts about the votes and format.

If the above concern is warranted, then it forms the crux of an objection to (non-
proxy) subjective assessment as a replication measure: in its application, all sorts
of irrelevant and biasing factors can influence the outcome of that measure. To the
extent that these factors could have influence, the measure could be itself objec-
tionably biased. What’s to stop iconoclastic, dissentious researchers from making
the judgment that they think will cause division? What’s to stop defensive, careerist
researchers from making the judgment that they think will advance their career?
Division and career advancement are not always aligned with the epistemic goals of
science. At the extreme end of this range, when the measure is given by the bare
outcomes of human judgments alone, there is nothing to preclude or mitigate these
biases. Adopting a purely subjective measure in this sense therefore seems to con-
flate the behavioral features of scientific judgment with their praxeological ones—the
reasons in which scientific judgments are grounded.

One possible response to this objection invokes OSC’s positive point about expert
scientific judgment, that scientists may be able to assess the replicability of complex
designs when formal criteria are hard to apply. If this expert judgment is known to
be reliable, then it could suffice to measure replication absent any explicit theory
or reasoning invoked for a given judgment. Empirical research on expert judgment,
however, circumscribes the specific and sometimes narrow contexts in which it can
be reliable (Shanteau 1992; Larrick and Feiler 2015). Crucially, “expert knowledge is
acquired from experience and training. . . . For expertise to arise from experience and
training, decision makers must be exposed to experiences that provide immediate,
accurate feedback about relationships in the world” (Larrick and Feiler 2015, p. 697).
For example, the skies provide immediate, quantifiable feedback to weather forecast-
ers, the survival of patients to surgeons, etc. Each must have received this feedback
from hundreds or thousands of cases before becoming reliable experts. By contrast,
(non-proxy) assessments of replication are rare enough and provide little or no feed-
back about whether that assessment was correct. The number of replications most
scientists assess is unknown, but is likely small due to lack of professional incentives
for doing so (Romero 2017).

It’s important to distinguish this lack of expertise for non-proxy subjective assess-
ment measures with the substantial expertise many scientists have with proxy
subjective assessment measures. For the latter measures, scientists would be given
explicit formal criteria to apply in their judgment, such as those described in Sec-
tions 4–7. Scientists’ experience applying these methods in their own work and being
checked in these applications by their peers gives reason to believe in the reliabil-
ity of their expertise in proxy mesaures. I am not aware of any replication efforts
employing proxy subjective assessment measures, but they are popular in the related
but still distinct task of predicting whether the results of a study will replicate in a
prospective study with a specified experimental design (Dreber et al. 2015; Camerer
et al. 2018; Forsell et al. 2019). In these tasks, scientists are provided, e.g., with
the null hypothesis significance testing measure discussed in Section 4 and a num-
ber of trading resources that they can use to buy and sell contracts that pay out just
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when a specific study’s results replicate.11 Their degree of belief in each such event
is also solicited. Standard techniques in economics then allow one to reconstruct the
collective (“market”) probability of replication (Wolfers and Zitzewitz 2006). Suc-
cess at this prediction task shows good evidence that scientists have expertise that
cuts through the complexity of individual experiments, but only towards the explicit
formal replication criterion used.

The aforementioned research on expert judgment suggests that experts rely on
heuristics for their judgments just like everyone else, only that the experts’ are trained
from the whip of experience (Kahneman and Klein 2009). When their judgments
are elicited, they may rely on those heuristics, even if the question asked did not
prompt them directly. It is thus not so unexpected that in the OSC study, where the
non-proxy replication measure was used, there was a substantial correlation between
replication teams’ subjective judgments of replication and the null hypothesis signif-
icance testing criteria described in Section 4 (OSC 2015, pp. 3–5). Plausibly, many
interpreted the replication question that OSC asked as a proxy for assessing that
criterion. If this interpretation were confirmed and widespread, then the subjective
judgment replication measure would closely track the significance testing criterion
because the scientists surveyed would be employing essentially the same reasoning
for that criterion. But this crypto-proxy subjective measure of replication would then
be vulnerable to analogous criticism, which I describe in Section 4.2, of the reason-
ing behind the criterion it proxies. In particular, there is reason to believe that it is not
an unbiased measure of replication.

One possible further response to these difficulties would locate them in the imper-
fections of scientists as rational agents. Instead of determining replication through
elicited expert judgment, it would model how scientists ought to judge as ideal
Bayesian agents. For instance, Earp and Trafimow (2015) have developed a Bayesian
framework that offers an explanation of the epistemic significance of replication
attempts in terms of the ways they can modify the confirmation of the original study’s
results. However, in order to implement this idea, they presuppose that success or fail-
ure of replication is an event in the ideal Bayesian agent’s probability space. That’s
to say that they take as given the existence of an unambiguous, dichotomous repli-
cation measure; for present purposes, what that measure is is precisely the issue in
question.12

4 Null hypothesis significance testing

4.1 Null hypothesis significance testing: description

Another straightforward way to measure replication is to compare the results of null
hypothesis significance tests (NHST) of the same hypothesis from both the original

11Forsell et al. (2019) also employ an effect size comparison measure like those discussed in Section 5.
12This is not a criticism of their project. Again, they aim to account for the significance of replication
successes and failures, not how one measures replication.
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and the attempted replication. Given a fixed significance level, one can classify both
the original study and the attempted replication dichotomously according to whether
they reject the null hypothesis (i.e., whether the p-value of the test fell below the sig-
nificance level). The replication is successful if and only if the original study and
attempted replication are accordingly classified in the same way and the point esti-
mates for both have the same sign. (Usually a study that is the target of a replication
effort has rejected a null hypothesis of interest, so an attempted replication would be
successful when it rejects that hypothesis, too).

A rationale for this replication measure arises from the centrality of NHST in psy-
chology, biology, and other disciplines. Psychological theories, for instance, typically
do not offer quantitative predictions of effect sizes, but only the existence of an effect
and the sign of the effect size—i.e., an inhibitory (negative) or promoting (positive)
effect. Thus two studies that reject the null hypothesis of zero effect size with a point
estimate of the same sign are both evidence for the same qualitative hypothesis.

4.2 Null hypothesis significance testing: critique

Even though NHST is ubiquitous in the social and biological sciences, criticism of
NHST is (almost) just as ubiquitous in the methodology literature (Morrison et al.
1970; Harlow et al. 1997; Kline 2004; McCloskey and Ziliak 2008). NHST has also
been identified as a possible cause for the replication crisis—see Romero (2019, p. 4)
and Fidler and Wilcox (2018, §2.4) for reviews. Indeed, some of the criticisms of
NHST are apropos to its use as a replication measure. In this subsection I focus on two
such problems leveled at NHST: the misleading arbitrariness of its dichotomous divi-
sion of outcomes, and its evidential asymmetry between rejection and non-rejection.
At the end of the section, I suggest an underlying reason why NHST-based measures
are vulnerable to these criticisms: NHST does not fully represent the results of a
study, so focusing on it only cannot in general provide an adequate basis for judging
replication.

Rosnow and Rosenthal (1989, p. 1277) summarize a common complaint about
NHST: “surely God loves the .06 nearly as much as the .05.” When the significance
level is set to 0.05, NHST treats this “threshold as a bright-line criterion between
replication success and failure” (OSC 2015, p. 4) so when the p-value of a test falls
slightly above this—e.g., at 0.06—it entails a different conclusion, non-rejection,
than if it were to fall equally slightly below. Yet these two p-values seem to represent
quite similar evidence against the null hypothesis. Thus NHST is too coarse-grained
to account for the similarity of studies with these p-values, hence it erroneously does
not count one as a successful replication of the other.

Although ultimately I agree with the thrust and conclusion of this criticism, the
NHST advocate has grounds for defense. If one takes the results of a study to consist
solely in the conclusion about rejection that NHST offers, then this criticism begs
the question by admitting the fine-grained p-values also as results of a study.13 The

13To be clear, OSC do not take this position; as far as I know, it is a novel, if extreme, way of defending
the use of NHST.
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fact that a small change in a quantitative property (the p-value) can produce a change
in a qualitative property (replication) should be no more troubling than other cases
of linguistic vagueness and sorites paradoxes. Here, it seems most appropriate to
employ a contextualist epistemic theory of vagueness, analogous to that of Graff
Fara (Graff 2000; Graff Fara 2008), in which the extensions of vague predicates are
relative to the current interests of a speaker.14 With respect to the “rejection” concept,
these interests determine the appropriate significance level below which the p-values
warrant rejection, in accordance with some recent recommendations to researchers
to justify the particular significance level they adopt in any particular study (Lakens
et al. 2018). On this view, the significance level is not a convention so much as an
expression or distillation of an individual researcher’s views about what the results
of a study are and what it would take to replicate them.

In practice, though, it is quite difficult to set such significance levels because all
the considerations that would bear on them are rarely transparent to any researcher.
Indeed, I know of no systemic account of how this should be done in general.15

This is partly because it is unclear what epistemic or practical goal, exactly, is being
considered. Without this transparency, the choice of significance level becomes a
matter of judgment possibly subject to the same sorts of unchecked biases that non-
proxy subjective judgment has as a replication measure (as discussed in Section 3.2).
Since the exact value of the significance level makes a difference to the verdicts that
the NHST replication criterion renders, these verdicts can therefore be objection-
ably biased. Setting the significance level as a convention may preclude such biases,
but renders the facts of replication objectionably conventional, in that they are not
appropriately grounded in the facts about the data and relevant goals of the research.

The second problem with using NHST as the basis for a measure of replicability
is that it does not equally reliably indicate failures of replication as successes. The
concept of the power of a statistical test illustrates why. To understand power, it is
helpful first to consider an elementary testing situation in which there are only two
candidate simple statistical hypotheses. The power of a test of one of those statistical
hypotheses, given a fixed significance level, is the probability that the test will reject
that hypothesis if it were false, i.e., if the other candidate hypothesis were true. When
there is more than one simple alternative to the null hypothesis tested, the power is a
function of whichever simple alternative is supposed as true.

What’s important for present purposes is that replication measures based on NHST
are insensitive to the power of either study being compared even though the power
makes a difference to that study’s reliability as a replication measure. How? Suppose
that an initial study produces evidence for the existence of an effect. According to
NHST, one of that study’s results consists in the rejection of the null hypothesis. Even

14Semantic theories of vagueness are more popularly applied to the usual sorites cases philosophers ana-
lyze, in part because they take seriously the idea that vagueness is a semantical phenomenon of natural
language. By contrast, here the goal of explicating “rejection” as a technical concept within the theory of
NHST is not beholden to everyday linguistic activity. For similar reasons, ideal language approaches and
those that take “rejection” as incoherent or vacuous are not apropos. (For more on these approaches to
sorites paradoxes, see Hyde et al. (2018, §3) .)
15But see Douglas (2009, pp. 104–5) for some general considerations.
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if the effect exists, i.e., the null hypothesis is false, a replication attempt with low
power at that effect size will with high probability fail to replicate the initial study
(Braver et al. 2014, p. 334; Simonsohn 2015, pp. 560–1). Conversely, if the original
study did not reject the null hypothesis even though there is in truth a nonzero effect
size, a replication attempt with low power at that effect size will with high probability
replicate the initial study. In a word, replication measures based on NHST cannot
reflect the reliability (or lack thereof) of the attempted replication to produce results
that are not misleading.

Although ultimately I agree with the conclusion of this second criticism, too, the
NHST advocate has grounds for defense similar to the ones for the previous criticism
about the arbitrariness of the significance level. If one, again, takes the results of a
study to consist solely in the conclusion about rejection that NHST offers, then what
kind of study one runs (e.g., with high power) is irrelevant, as long as it employs
NHST to arrive at that conclusion. In other words, the NHST advocate may accept
that their replication measure is insensitive to a study’s power but deny that this is
relevant for replication if the power is not considered to be a part of or pertinent to
the study’s results.16

This defense, however, is in tension with the evidential goals of replication and
classical statistics’ endorsement of reliability’s evidential relevance. The question of
replication—whether one study produces “the same or sufficiently similar results
as the original”—is not of scientific interest intrinsically but because it bears on
the evidential and practical questions central to scientific inquiry: Which scientific
hypotheses have been empirically established? Would one risk too much by using or
building on a result to guide future inquiry, e.g., by presuming it true or empirically
adequate? Degrees of evidence are the currency by which answers to these questions
are purchased. In classical statistics, the degrees of evidence for or against a hypoth-
esis depend not just on the results obtained, but the results that could have been
obtained and with what probabilities, viz., the reliability of the testing procedure used
(Fletcher and Mayo-Wilson 2021).

One way to maintain this defense would be to switch from the framework of clas-
sical statistical testing to a version of Bayesian statistics that denies the evidential
relevance of reliability. For example, Etz and Vanderkerckhove (2016) have pro-
posed replacing NHST replication measures, which depend on a significance level,
with measures based on threshold values for Bayes factors. The Bayes factor is a
comparative measure of the evidence that data provide, defined as the ratio of the
likelihood of the data if one hypothesis were true to the likelihood of the data if the

16Simonsohn (2015) proposes another defense: calculate the effect size at which the original study has
power of 0.33. Then, have the attempted replication test the hypothesis that the effect size is at least this
large, or alternately check whether the attempted replication’s confidence interval contains that effect size.
Rejection (or the confidence interval’s failure to contain the original point estimate) signifies a failure of
replication. Simonsohn (2015, p. 565) requires that the replication have power of 0.8 at that effect size,
which typically demands a sample size of about 2.5 times the original. Besides various ad hoc components,
this proposal introduces two new parameters whose exact values are arbitrary and so only exacerbates the
first problem with NHST. It also suffers from the asymmetry problem that befalls confidence interval-
based measures of replication, which I describe in Section 6.2.
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other, comparison hypothesis were true. For example, if the probability (or probabil-
ity density) of the data according to one simple statistical hypothesis were 1/2, and
that according to another were 1/10, then their corresponding Bayes factor would
be (1/2)/(1/10) = 5, indicating moderate evidence for the first hypothesis over the
second.17 Bayes factors above one indicate some comparative evidence for the first
hypothesis over the second, and vice versa for Bayes factors below one. (A Bayes
factor equal to one indicates that the evidence is indifferently favorable). One can
also compare non-simple statistical hypotheses—e.g., that the size of some effect is
nonzero—by using the law of total probability, which requires calculating an inte-
gral that weights the likelihoods of the simple statistical hypothesis composing the
non-simple ones by their prior probability.

With this extension, Etz and Vanderkerckhove (2016) compute the Bayes factor for
the alternative hypothesis, that there is a nonzero effect size, against the null hypoth-
esis of no effect. To do so, they assume a standard normal prior distribution for the
effect sizes. They consider Bayes factors of at least ten to constitute “strong evidence”
for the alternative hypothesis over the null. A replication attempt is successful when
its results about strong evidence are the same as the original. Reanalyzing OSC’s
data, they found a replication rate of 75%, much larger than OSC’s 39% using the
NHST criterion.18

This way of defending a Bayesian version of an NHST replication measure still
encounters problems of arbitrariness.19 First, whenever there is more than one pos-
sible effect size, computation of the Bayes factor requires a prior over the simple
hypotheses representing them. As Etz and Vanderkerckhove (2016, p. 3) admit,
“Other analysts could reasonably choose different prior distributions when assess-
ing these data, and it is possible they would come to different conclusions.” Thus the
conclusions of such an analysis are not (at least approximately) invariant under ana-
lysts’ equally justified choices. Second, the Bayes factor threshold of ten for strong
evidence inherits same problems as setting significance levels for NHST.

There is a certain underlying unity to the primary objections against employing
replication measures based on NHST or analogues. In every case, one can under-
stand the objections as revealing the inadequacy of NHST in capturing what the

17Thus, Bayes factors for simple statistical hypotheses are just likelihood ratios; they do not require any
information about the prior probability for the hypotheses being compared. Consequently, likelihoodists,
who focus on this ratio and eschew prior probabilities when it comes to statistical inference and evidence
(Hacking 1965; Edwards 1972; Royall 1997), can adopt the same procedure. The second of my two crit-
icisms in the subsequent paragraphs does not depend on these priors either, so it applies equally to the
likelihoodist.
18Actually, Etz and Vanderkerckhove (2016) employ a more complicating weighting system, using what
they call “mitigated” Bayes factors, based on different scenarios for publication bias, the phenomenon that
the results of published studies are not representative of studies performed.
19There may be other Bayesian ways of construing an NHST replication measure. For instance, by using
the techniques of prior elicitation, researchers could construct a justified prior representing the beliefs
of a relevant scientist (or an average from a group of relevant scientists) as well as their preferences
that determine a threshold for the Bayes factors. However, except in the simplest cases, these techniques
themselves involve modeling choices and idealizations, variations on which can significantly alter the
priors and preferences represented (Stefan et al. 2020). Thus it is not clear that using prior elicitation in
practice avoids problems of arbitrariness.
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results of a study are such that they could be sufficiently similar to the results
of another.20 A single study rarely establishes the existence or absence of a phe-
nomenon, but rather allots degrees of evidence to each possibility. Rejection and
non-rejection are too coarse of a division of epistemic consequences from the possi-
ble data to accommodate this. (This suggests already that one should resist adopting
dichotomous replication measures, a conclusion I draw in Section 8). Moreover,
those results depend on their reliable production; replication attempts should have
a fighting chance to provide veritistic results about hypotheses. In sum, replication
measures based solely on NHST encounter the problems they do because they reify a
synecdoche, mistaking a particular technical goal in statistical studies for the broader
scientific goal of producing and accumulating evidence.

5 Effect size comparison

5.1 Effect size comparison: description

The point estimate for a study represents the effect size that the data from that study
best support (i.e., that with which the data is most statistically compatible). So, one
way to compare the results of two studies about the same effect is by comparing their
point estimates. However, due to the variability of the data, it is usually extremely
unlikely that the point estimates from a study and an attempted replication thereof
are exactly the same. If the space of effect sizes has a natural distance function on
it, as it often does, one can compute the distance between two studies’ point esti-
mates. But, how close would they need to be for the original study to count as being
replicated? How can such measures take into account the differing variances of their
estimates, which manifest in differently sized confidence intervals? These differ-
ing variances entail that the same distances between point estimates for one pair of
studies may not have the same implications for replication as another, as high vari-
ance should increase the tolerance for differing point estimates when evaluated for
replication.

One way to overcome these difficulties is to run a statistical test using both point
estimates known as a two-sample test. This significance test applies not to simple
statistical hypotheses representing effect sizes simpliciter, but to those representing
the difference in effect sizes of the populations from which the two studies are drawn.
One runs a significance test of the null hypothesis that there is no difference in effect

20In addition to the criticisms I’ve described, Simonsohn (2015, p. 561) makes two further criticisms of
measuring replication via NHST. Both amount to the fact that NHST does not depend on the similarity of
the studies’ estimates of effect size. For example, an original study with a large estimated effect size could
be replicated “successfully,” according to a NHST replication measure, by a study with a small estimated
effect size. Like the criticisms I’ve described, a defender of NHST could claim that these criticisms beg the
question because they presume different conceptions of what the results of a study are. But these criticisms
are equally well explained in the unified way I have suggested: NHST does not adequately capture what
the results of a study are, and so no viable replication measure can be based on it alone.
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size. The attempted replication is successful if and only if this null hypothesis is not
rejected.21

5.2 Effect size comparison: critique

A study’s point estimate of an effect size ostends the effect size that the study best
supports. Because effect sizes in general are fine-grained and quantitative, basing a
replication measure on a statistical test comparing two from different studies might
then prima facie plausibly avoid some of the issues with NHST. Such progress in the
end is limited, however, and comes with new problems. In this subsection I describe
three. The first two are essentially the same as problems that befell NHST: the arbi-
trariness of the significance level used in the test leading to a dichotomous result,
and the unreliability of low power replications. The third is a new problem, but one
related to the underlying unity of the objections described at the end of Section 4.2
about the nature and content of a scientific study’s results: effect size comparisons
are not sufficient to capture whether the results of two studies are the same, as a
replication measure must.

For the first two problems, recall that an effect size comparison between two stud-
ies employs a significance test on the null hypothesis that the effect sizes of the
populations from which the two studies were drawn were the same. Because this is
an instance of NHST, just with a different null hypothesis, it encounters many of the
same problems as recounted in Section 4.2. First, it needs to employ some signif-
icance level as a boundary between replication and non-replication, but in practice
this boundary is arbitrary, conventional, or open to influence from objectionable bias.
Second, a replication attempt with low power to detect a difference in population
effect size from the original has a high probability of success, even if the original
study found evidence for a non-existent effect. This can be especially likely when the
original’s estimated effect size was small (Simonsohn 2015, p. 561).

The third problem is that a test for significantly different effect sizes between two
studies may not sufficiently bear on the question of whether the results of the studies
are the same. The main reason is that a study’s point estimate is only a proper part
of its results, which also include the contours of CIs as various confidence levels,
tests of auxiliary assumptions, etc. If the effect-size-difference test does not reject
because the two studies’ point estimates are similar, then there is not sufficiently
strong evidence to conclude that the populations from which the two studies’ data
are drawn are different. But that does not preclude evidence for a difference coming

21An important qualification: Although OSC do use this method, they do not highlight it to describe a
replication rate for any particular psychological effect. Instead, because OSC are interested in aggregate
rates of replication in social and cognitive psychology, they compute paired difference significance tests
(both t and Wilcoxon signed rank) that compare the estimated standardized effect sizes (in terms of corre-
lation coefficients) found in nearly one hundred original studies with those estimated standardized effect
sizes found in attempted replications of those studies. In a word, this test is of the hypothesis that there is
no difference in the effect size for the aggregate of replication attempts in comparison with their paired
originals. (Their test rejected this hypothesis, finding that the replication effect sizes were in aggregate
smaller than the originals). However, the underlying idea in this application is quite analogous to that when
applied to individual replication attempts.
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from other results, e.g., low overlap of confidence intervals. Conversely, if the test
does reject, then there is only evidence that the populations studied were different.
The source of the rejection is underdetermined: it could be a replicability failure, or
it could be heterogeneity in the population. (This is plausible if both studies’ point
estimates have the same sign but different magnitudes). This is compatible with the
replication attempt being a candidate direct replication if that heterogeneity was not
specified in the original study.22

6 Effect size within replication confidence interval

6.1 Effect size within replication confidence interval: description

Recall that confidence intervals can be understood as estimates of effect sizes that
take into account, in the sense just described in Section 5, the variability of the data
even when they arise from a context with a single true effect size. They offer a range
of effect sizes statistically compatible with the data observed. It is then quite natural
to ask, as a way of assessing replication, whether an attempted replication’s confi-
dence interval contains the effect size point estimate of the original. Alternatively, one
can ask whether the original’s confidence interval contains the attempted replication’s
effect size point estimate. (OSC employ only the former, presumably because not all
the original studies that they attempted to replicate produced confidence intervals,
but this is of no consequence for present purposes).

6.2 Effect size within replication confidence interval: critique

Determining whether the original point estimate of the effect size falls within an
attempted replication’s confidence interval (CI) may seem to ameliorate at least one
of the problems with replication measures based on NHST, namely that they are
not sensitive to certain fine-grained results of studies, such as the reported p-values
for hypothesis tests (OSC 2015, p. 4).23 However, analogous and other problems
remain: the same arbitrariness, conventionality, or possibility for bias afflicting the
selection of the significance level affects the selection of the confidence level, and
replication attempts with low power still have a high probability of success, even
if the original study produced misleading results. Regarding the latter problem, the
reasons are essentially the same as before: studies with low power against hypotheses
of interest will produce point estimates with high variance, so any CI constructed

22Simonsohn (2015, p. 561) suggests another related problem, that effect size comparisons answer the
question of “whether the effect of interest is smaller than previously documented . . . rather than whether a
detectable effect exists.” But this problem implausibly presupposes that the point estimates are not a part
of the results that must be sufficiently similar in a replication.
23There is also a Bayesian version of CIs, called credible intervals. However, the same problems arise
for credible intervals as CIs because these problems depend on features of intervals common to both.
(Cf. similar comments by Simonsohn (2015, p. 567) .)
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from them will be wide. The wider the CI, the more likely it will encompass the
original study’s point estimate.

In addition to these, there is a pair of new problems with CI-based replication
measures. Both afflict the above described version as well as the version that checks
whether the original study’s CI contains the attempted replication’s point estimate.
The first problem arises from a formal asymmetry between how the original study
and attempted replication are treated by the measures: It’s possible for this measure
to determine that one study replicates another, but not vice versa. (This is even likely
if their powers are substantially different). This is a problem if one thinks, reasonably,
that the results of a study do not depend on the time it was conducted or published
or whether other studies were conducted or published before or after (except perhaps
insofar as the studies’ covariates are temporal). For in this case, if two studies have
the same or nearly the same results, then each should replicate the other. In other
words, as a relation it is asymmetric, despite it being a formalization of the binary
relation between studies of having “the same or sufficiently similar results,” which is
symmetric.

This asymmetry problem arises from two facts, that CIs in two studies can be of differ-
ent sizes and that the point estimate values they respectively contain need not be in
their centers. (The first is in essence the origin of the problem above about low power
replication attempts still having a high probability of replication). As an example
only of CIs of different sizes, one study might have a point estimate of 1 with a CI of
[0, 2], while another might have a point estimate of 3 with a CI of [1, 5]. As an exam-
ple only of asymmetric CIs, one study might have a point estimate of 1 with a CI of
[0, 4], while another might have a point estimate of 3 with a CI of [2, 6] Whether the
one replicates the other depends on which is regarded as the original study.

The second problem concerns an interpretational issue with CIs. As I discussed
above, CIs are interval estimates of effect sizes; they are not directly predictions
about future data. The reason for this is that effect sizes represent hypotheses about
the magnitude of an effect, not the distribution of possible values of estimators. Even
with an effect size fixed, there will be variability in the data resulting therefrom and
hence in estimators based on them. Checking whether a point estimate from one study
falls in the CI of another treats the results of the CI construction procedure as a fixed
quantity, like an effect size, when in fact it too is constructed from data produced
with variation.

On the basis of this second problem, Patil et al. (2016) advocate switching CIs for
prediction intervals. Prediction intervals are designed specifically to ameliorate this
problem. As with CIs, one first fixes a number between zero and one as the interval’s
confidence level. Then, a procedure for producing a prediction interval from data
yields a range (e.g., an interval) of values of a statistic that may be produced in a
future study. The range will contain the next value for that statistic with a probability
equal to the set confidence level. Also, as with CIs, the size of the interval tends
to covary with the confidence level, so that higher confidence levels yield larger
prediction intervals and lower confidence levels yield smaller prediction intervals.24

24There is also a Bayesian version of a prediction interval, but as I described in the previous footnote, switching
to Bayesian methods doesn’t preclude any of the problems with interval-based replication measures.

Page 17 of 27    57European Journal for Philosophy of Science (2021) 11: 57



In some cases, prediction intervals also solve the asymmetry problem. When the
interval is constructed from a pivotal quantity, like with many methods for construct-
ing CIs, the prediction interval based on one study for a statistic in another will have
the same width as the prediction interval based on the other study for the one. The
reason for this is that the size of the interval depends in a symmetric way on the
variability of the estimators in both studies. For many of these pivotal quantities, the
prediction interval for a new statistic is also guaranteed to be symmetric about the
point estimate for that statistic. However, this is not generally the case (e.g., when the
support of the statistic is not isomorphic to the real line). This means that adopting
prediction intervals does not completely solve the asymmetry problem.

One way to attempt to mend the problem would be to ask about the conjunction
or disjuction of the two questions about the point estimate of one study falling in
the prediction interval of another. Although this solves the formal asymmetry prob-
lem, it re-introduces problems of interpretation. Both the disjunction and conjunction
appear as ad hoc solutions that move the replication measure away from answering
the question of whether two studies have the same or similar results. In any case, any
interval-based measure of replication still faces the same sort of arbitrariness in the
selected confidence level as measures based on NHST or effect size comparison did
in Sections 4.2 and 5.2, respectively.

7 Meta-analytic summary

7.1 Meta-analytic summary: description

Since one of the primary goals of statistical analysis and inference in science is to
quantify the evidence for and against hypotheses, one way to assess an attempted
replication is to describe the ways in which it does and does not alter the evidential
support for hypotheses of interest (viz., effect sizes). The extent to which the (per-
haps tentative) conclusions that our total evidence suggests change after a replication
attempt might therefore be used to measure the attempt’s success. Methods for amal-
gamating the evidence for and against statistical hypotheses fall under the heading
of meta-analysis, so called because meta-analytic techniques contribute to statistical
analyses whose data are themselves statistical analyses, viz., individual studies.

One way to implement this idea “weights each study by the inverse of its [sample]
variance and uses these weighted estimates of effect size to estimate cumulative evi-
dence and precision of the effect” (OSC 2015, p. 5), although there are many ways to
implement meta-analysis sensitive to the variety of studies and statistical techniques
they use.25 The weighted estimates provide a direct point estimate of the effect size
based on both the original and attempted replication studies, which can be used to run
a null hypothesis significance test for the effect and produce a confidence interval of
effect sizes, just like with an individual study.

25See, for instance, Rosenthal (1991), Lipsey and Wilson (2001), and Ellis (2010), or Cumming (2013).
In Section 7.2, I address the question of whether these many ways present a problem for meta-analytic
measures of replication analogous to the problems of arbitrariness discussed in Sections 4–6.
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What does one then do with such tests, estimates, and confidence intervals? One
option is to submit these new results to the replication measures described in the
previous three sections, focusing on NHST, the comparison of point estimates, or the
comparison of point estimates with confidence intervals. Each of these, in a sense,
constitutes a distinct measure of replication.

OSC focus on the first measure: for each pair of studies, they report the result of
NHST based on the cumulative evidence that the two studies provide.26 The replica-
tion is successful just in case the result of the test for the meta-analysis is the same
as the result of the test for the original study. (Because, again, the original studies are
typically published only when they reject the null hypothesis of no effect, a replica-
tion typically will be successful on this measure if and only if the meta-analysis also
rejects this null hypothesis). What distinguishes this from the replication measures
discussed in previous sections is that instead of comparing the original study with the
replication attempt, it compares the original study with a meta-analysis that combines
the evidence from the original and the new study. This can thus yield conclusions dif-
ferent from replicability measures based on NHST alone, for two studies—the first
with statistically significant results and the second without—can, when combined,
still reach statistical significance.

But meta-analytic approaches to replication need not adopt any of the previous
replication measures. One can instead just recompute point estimates and confidence
intervals after each new replication study, an approach that Braver et al. (2014, p. 334)
call continuously cumulating meta-analysis (CCMA):27

In CCMA, instead of misleadingly noting simply whether each replication
attempt did or did not reach significance [in the manner of NHST-based repli-
cation measures], we combine the data from all the studies completed so far
and compute various meta-analytic indexes to index the degree of confidence
we can have that a bona fide phenomenon is being investigated. In other words,
the individual effect sizes of the entirety of completed studies are pooled into
a single estimate. . . . The CCMA approach therefore shifts the question from
whether or not a single study provided evidential weight for a phenomenon to
the question of how well all studies conducted thus far support conclusions in
regards to a phenomenon of interest.

In addition, CCMA facilitates analysis of whether the effect sizes that a group of
studies finds is more or less heterogeneous than expected. The extent to which they
are indicates that the studies may not be testing exactly the same phenomenon, hence
that one should interpret the meta-analytic estimate of the intended phenomenon’s

26OSC (2015, p. 4) were only able to employ this technique with 75 of the original 100 studies they
examined because limitations in the reported statistics of the remaining 25 studies precluded the necessary
meta-analytic calculations.
27Braver et al. (2014) work in psychology, but are not the first to suggest meta-analysis for their discipline.
Schmidt (1996, 1992), for instance, has advocated it as a general methodology for “cumulative knowledge”
in psychology and only more recently suggesting it as a partial solution for some of the problems of the
replication crisis (Schmidt and Oh 2016).
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effect size with caution before attempting extra modeling to account for possible
sources of publication, selection, or reporting bias (Braver et al. 2014, pp. 336–7).

The process of testing for unexpected (hence, unmodeled) heterogeneity and bias
is the same in meta-analysis as the process of testing for the misspecificaion of a
statistical model in other contexts, such as regression (Mayo and Spanos 2004). In
regression, one infers how one variable or type of variable (the dependent ones)
depends functionally on another variable or type of variable (the independent ones),
allowing for some random variation. A regression analysis of a data set often begins
with a set of simple assumptions, such as that the dependent variables depend only
linearly on the independent variables. A statistical “goodness-of-fit” test assesses
evidence against this assumption; if violated, then the usual estimators for the regres-
sion function’s coefficients will be biased. One then replaces the simple assumption
of linearity with something more complex and contextually appropriate, and begins
assessment of the model again. The situation with meta-analysis is the same: one
often begins with a simple meta-analytic model, perform checks of that model (e.g.,
for the censoring mechanisms arising from publication bias discussed in Section 7.2),
then adds complexity as necessary. See, e.g., Rosenthal (1991, Ch. 7), Ellis (2010,
Ch. 6), or Schmidt and Hunter (2015, Ch. 13) for textbook treatments of how to detect
and correct for various types of heterogeneity and bias in meta-analysis in this way.

Two further comments on the foregoing quotation are in order. First, Braver et al.
(2014, p. 338) take dichotomous NHST-based replications measures to be mislead-
ing for reasons similar to some of those I offer in Section 4.2, namely that whereas
adopting any particular significance level threshold for declaring results to be sci-
entifically significant imposes a distinction in kind, any replication measure must in
fact reflect that evidence comes in degrees. Second, one may wonder about why the
“shift” in the replication question that CCMA promotes is legitimate. In Section 8,
I describe this shift in more detail, endorsing it over the other means of employing
meta-analysis that still accept that replication measures should produce dichotomous
outcomes. Before this, I turn to rebutting various general criticisms of meta-analytic
replication measures.

7.2 Meta-analytic summary: defense

The most prominent and repeated criticism of using meta-analytic methods as repli-
cation measures is that the original studies that they combine with their respective
attempted replications “have inflated [estimates of] effect sizes due to publication,
selection, reporting, or other biases” (OSC 2015, p. 5). “Publication bias” refers to
the fact that the type of results in scientific studies correlates with those studies’
publication (Romero 2019, p. 4): results providing evidence for the existence of a
novel, flashy effect are positively correlated with publication, while results reporting
no such evidence, especially direct replications, are negatively correlated (Fidler and
Wilcox 2018, §2.2). It operates at the level of individual scientific studies, acting as
a kind of “missing data” mechanism for the corpus of studies on a subject. Selection
or reporting bias, by contrast, operates at the level of the sections of data that scien-
tists collect and report and the statistical tests they run. For instance, consider again a
scientist interested in the effect of different culturing conditions on the efficiency of
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pluripotent stem cells to differentiate into certain other types of cells. They may test
this efficiency for a variety of cell types, but report only on the types for which
the treatment yielded a rejection of the null hypothesis of no effect. By selecting
or reporting only some of the data they collected and statistical tests they ran, the
scientist may raise their chances of publication but distort the evidence their data
provides, e.g., by not correcting their p-values or confidence intervals for multiple
testing effects.

A consequence of the existence and direction of all of these biases is that the sizes
of effects, even when those effects exist, will be overestimated in the conventional
research literature, and this overestimation will bias the conclusions of any meta-
analysis of that literature that does not explicitly estimate and correct for them (as
described in the previous subsection), even if there are many replications published
in the literature (Schmidt and Oh 2016). For instance, in a recent study of 17 meta-
analyses of effects in psychology compared with large-scale pre-registered studies
of the same effects, Kvarven et al. (2020) found statistically significant differences
between 12 (using, essentially, the effect size comparison method of Section 5 with
a significance level of 0.005). The average ratio of standardized effect sizes of repli-
cations to meta-analysis across the 17 pairs was about 1/3. This is strong evidence in
favor of the existence and direction of the biases supposed.

Before addressing this objection, it will be helpful to get clear on exactly which
aspect of meta-analytic measures it bears. For this, there is a useful analogy with
the concepts of accuracy and precision in metrology (JCGM 2012). In this context,
“accuracy” refers to a measurement technique’s ability to produce a result close to
the truth, while “precision” refers to the technique’s ability to produce relativity con-
sistent results in repeated uses. What a replication criterion measures is analogous
to precision, i.e., whether the results of studies are consistent under varying cir-
cumstances. Publication, selection, and reporting bias, on the other hand, affects a
meta-analysis’ accuracy, i.e., whether its results produced reflect the quantity they
estimate.

This effect on accuracy means that biases do in general make a difference to the
probability that a particular replication study will yield a particular result accord-
ing to a replication measure. Thus, even though they do not affect token replication
measure applications, they do affect the aptness of any replication measure type to
fulfill its purpose: inform whether the results of certain scientific studies are reli-
able. In this sense, their effects parallel those of the statistical power of a replication
study on replication measures discussed in Sections 4–6. But they are therefore a
matter with which users of any replication measure should contend, not just meta-
analytic measures. This is not just a tu quoque response, for meta-analytic measures
are well-positioned in particular to incorporate these corrections through modeling,
as described in the previous subsection. Indeed, because the biases in question are
probabilistic (statistical) effects over the population of potential studies on a topic,
it seems that meta-analytic procedures are needed for this correction, regardless of
which replication measure is used.

If these biases affect all replication measures, why has this criticism been applied
only to replication measures based on meta-analyses? I suggest that it’s because the
traditional role of meta-analysis is to report the total evidence about an effect reliably,
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while no such precedent exists for the other replication measures. This may have
led the scholarship on replication not to emphasize that publication, reporting, and
selection bias are equally problems for all replication measures, all of which take the
results of studies at face value and aim to provide assurance on the reliability of those
results. What’s particular about meta-analytic measures is that they can integrate with
other meta-analytic tools to model and correct for these biases.

After the objections concerning publication, selection, and reporting bias are set
aside, another problem remains for versions of replication measures that take the
meta-analysis only as an input to one of the other replication measures I have dis-
cussed: they are vulnerable to many of the same (or strongly analogous) criticisms
of those measures. For example, as I had described in the previous subsection, OSC
employ meta-analysis to pool the data for each study pair, then calculate using NHST
whether the pooled data entail rejecting the null hypothesis. Using NHST in this
context is open to the objections against it that I raised in Section 4.2, in particu-
lar about the arbitrariness of the significance level and the lack of reliability for low
power replication attempts. The same objections concerning arbitrariness and uneven
reliability for effect size comparisons and confidence interval methods also carry
over.28

CCMA, however, is not vulnerable to these criticisms. Recall from the previous
subsection that it reports the meta-analytic point estimate of the effect size and a
confidence interval thereof, perhaps at various significance levels, for each new repli-
cation study completed. This allows one to compare quantitatively the evolving best
estimates of effect sizes as evidence accumulates—in particular, with those from the
original study. It also allow one to assess whether the effect size estimates and confi-
dence intervals are more or less heterogeneous than one would expect, which would
provide evidence against the assumption that the studies are in fact measuring the
same phenomenon. Using a variety of combinations of these methods, Braver et al.
(2014) show using simulations with effect sizes and powers common in psychology
that CCMA outperforms purely NHST-based measures of replication in coming to
accurate and precise conclusions.

A third criticism pertaining even to CCMA concerns the latitude with which a
meta-analyst may make choices in the steps of their analysis, such as in their inclusion
and exclusion criteria for relevantly similar studies and in their techniques for deter-
mining the relative weighting of different studies. This latitude has even led to some
philosophers to draw skeptical conclusions of meta-analysis’s epistemological util-
ity due to the unchecked possibility for the influence of bias (Stegenga 2011; Jukola
2015; Romero 2016). I agree, however, with the assessment of Holman (2019) that

28Other objections do not carry over. The third problem for effect size comparisons—that they do not
plausibly test whether the results of two studies are the same (Section 5.2)—does not carry over because
the comparison between the results of a previous study and that of a meta-analysis no longer aims to
explicate such a comparison of sameness. Instead, it tests whether the addition of the results of a new study
to one’s total evidence changes how the total evidence bears on hypotheses of interest. The asymmetry
problem for confidence interval-based measures (Section 6.2)—that as a relation between studies they are
not symmetric, hence do not capture sameness of results—does not apply for similar reasons.
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meta-analysts are continually and creatively improving their techniques to detect and
correct for various types of bias, including sober recommendations of different tech-
niques’ effectiveness in different situations (van Aert et al. 2016; Carter et al. 2019).
For instance, Braver et al. (2014) recognize that publication bias preferentially cen-
sors initial statistically insignificant studies, and perform simulations showing that
CCMA does well to correct this bias if replication studies do not suffer the same bias.
Moreover, Holman (2019) points out historical evidence that scientific communities
do not ignore the latitude that conflicting meta-analyses seem to endorse, but through
self-correction come to a consensus about which techniques are the right ones to
use in which circumstances. Consensus on meta-analytic results and techniques sup-
presses the influence of the sort of bias under discussion and supports those results’
objectivity. What’s more, during transient periods of underdetermination between dif-
ferent meta-analytic techniques that seem at the time equally justified, meta-analysts
can compare these discrete options—a so-called “sensitivity analysis”—to see if con-
clusions of interest are robust between them (Carter et al. 2019). This contrasts with
the continuous options for, e.g., setting significance thresholds and the dependence
of replication measures on their values, where the criteria for a successful sensitivity
analysis are unclear.

8 Conclusions and implications: changing the question

CCMA is radical because it rejects a presupposition of the question about replication
itself, namely that replication is a dichotomous phenomenon: one study either repli-
cates another or it does not. Is this rejection legitimate or does it merely change the
subject? There is good reason to believe that it is legitimate. First, we should allow for
the possibility that the original question’s presupposed binary possible answers were
a needlessly simplified explication of the function of replication, one that distorts its
scientific goals. Indeed, the cumulative growth of pure and applied science depends
on replications providing sufficiently strong evidence of the reliability of phenomena
studied, not whether this is established through answering a yes/no question (Schmidt
1996; 1992). Rarely will one study present sufficiently strong evidence to establish
the magnitude of an effect; more rarely still will a single replication attempt so estab-
lish it if positive or debunk it if negative (OSC 2015, p. 6). One might explain why
the replication measures discussed in Sections 3–6 were subject to such problems,
many recurring, by observing that they assumed that replication must be measured
dichotomously.29 This is to adopt a misleading framework of how studies typically
accumulate evidence, especially in disciplines like psychology, where studies with
relatively low power are common and only have evidential strength when com-
bined. Thus, in another sense, CCMA is conservative because it retains the essential

29It may be possible to delineate admissible measures of replication by starting with and defending this
negative conclusion as an assumption instead. Investigating this possibility, however, must await another
occasion.
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function of replication, to amplify the evidence about an effect so that researchers
may decide for themselves whether, and if so how, to build upon that effect in their
further scientific pursuits. Doing this quantitatively allows researchers to calibrate
their decisions better than qualitative, dichotomous replication measures do.

In liberating us from the coarse dichotomy of “success” and “failure,” CCMA
implicates discipline-wide studies of replicability, such as that of OSC (2015): instead
of summarizing replicability with a percentage of successes, one can instead produce
spaghetti plots of effect size estimates, CI bounds, and their incremental changes in
standardized effect size over increasing numbers of replications. One can also quan-
tify the variability of these changes using measures of dispersion and heterogeneity
for effect size estimates over the collection of attempted replications. Based on these,
studies that would have otherwise been classified as “failed replications” can be inter-
preted either as falling within the expected range of variation, or signal the need for
further investigation to explain the unexpected difference. Neither the original nor
the replication attempt can be deemed at fault, a priori. The conceptual adequacy of
CCMA as a meta-analytic measure of replication thus allows us to better assess the
extent of our evidence for the multitude of scientific hypotheses investigated.

When one does this for the range of studies under focus by OSC, one can observe
the trends of narrower CIs centered on smaller effects sizes than reported in the orig-
inal studies: there is still evidence for the existence of many effects on which the
original studies focused, but with smaller magnitude. But in no way does it debunk
the importance and magnitude of the replicability crisis, which has many causes and
manifestations (Fidler and Wilcox 2018; Romero 2019). Meta-analytic techniques
also do not address or ameliorate these causes, nor do they annul the pernicious
effects of bias and questionable research practices without testing for and model-
ing them (Schmidt and Oh 2016). Interpreted uncritically and under these pernicious
effects, simple meta-analyses can still produce highly misleading summaries of our
total evidence, as the oft-repeated criticism of them discussed in Section 7 rightfully
holds. But as I also discussed in that section, researchers are continuing to expand
and delineate a toolkit of tests and modifications (van Aert et al. 2016; Carter et al.
2019), many of which have become standards in textbooks on the subject (Rosen-
thal 1991; Ellis 2010; Schmidt and Hunter 2015), similarly to how researchers have
developed a vast toolkit of tests of and modifications to simple linear regression. As
Holman (2019) has emphasized, meta-analysts have made and continue to make con-
sistent progress in these developments and resolving which competing techniques are
better justified for a given application.
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